
Jensen-Bregman LogDet Divergence for Efficient Similarity Computations on Positive Definite Tensors

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 12-013

Jensen-Bregman LogDet Divergence for Efficient Similarity

Computations on Positive Definite Tensors

Anoop Cherian, Suvrit Sra, Arindam Banerjee, and Nikos

Papanikolopoulos

May 02, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
02 MAY 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Jensen-Bregman LogDet Divergence for Efficient Similarity
Computations on Positive Definite Tensors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Minnesota,Department of Computer Science and
Engineering,200 Union Street SE,Minneapolis,MN,55455-0159

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Covariance matrices provide an easy platform for fusing multiple features compactly and as a result have
found immense success in several computer vision applications including activity recognition, visual
surveillance, and diffusion tensor imaging. An important task in all of these applications is to compute the
distance between covariance matrices using a (dis)similarity function, for which the natural choice is the
Riemannian metric corresponding to the manifold inhabited by these matrices. As this Riemannian
manifold is not flat, the dissimilarities should take into account the curvature of the manifold. As a result
such distance computations tend to slow down, especially when the matrix dimensions are large or
gradients are required. Further, suitability of the metric to enable efficient nearest neighbor retrieval is an
important requirement in the contemporary times of big data analytics. To alleviate these difficulties, this
paper proposes a novel dissimilarity measure for covariances, the Jensen-Bregman LogDet Divergence
(JBLD). This divergence enjoys several desirable theoretical properties, at the same time is
computationally less demanding (compared to standard measures). To address the problem of efficient
nearest neighbor retrieval on large covariance datasets, we propose a metric tree framework using kmeans
clustering on JBLD. We demonstrate the superior performance of JBLD on covariance datasets from
several computer vision applications.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Jensen-Bregman LogDet Divergence for Efficient

Similarity Computations on Positive Definite

Tensors

†Anoop Cherian ‡Suvrit Sra †Arindam Banerjee †Nikos Papanikolopoulos

†Dept. of Computer Science ‡MPI for Intelligent Systems

Minneapolis, MN-55455 Tuebingen, Germany

†{cherian, banerjee, npapas}@cs.umn.edu

‡suvrit.sra@tuebingen.mpg.de

May 1, 2012

Abstract

Covariance matrices provide an easy platform for fusing multiple features com-

pactly and as a result have found immense success in several computer vision ap-

plications, including activity recognition, visual surveillance, and diffusion tensor

imaging. An important task in all of these applications is to compute the distance

between covariance matrices using a (dis)similarity function, for which the natural

choice is the Riemannian metric corresponding to the manifold inhabited by these

matrices. As this Riemannian manifold is not flat, the dissimilarities should take

into account the curvature of the manifold. As a result such distance computations

tend to slow down, especially when the matrix dimensions are large or gradients

are required. Further, suitability of the metric to enable efficient nearest neighbor

retrieval is an important requirement in the contemporary times of big data analyt-

ics. To alleviate these difficulties, this paper proposes a novel dissimilarity measure

for covariances, the Jensen-Bregman LogDet Divergence (JBLD). This divergence

enjoys several desirable theoretical properties, at the same time is computation-

ally less demanding (compared to standard measures). To address the problem

of efficient nearest neighbor retrieval on large covariance datasets, we propose a

metric tree framework using kmeans clustering on JBLD. We demonstrate the su-

perior performance of JBLD on covariance datasets from several computer vision

applications.

1 Introduction

Recent times have witnessed a steep increase in the utilization of structured data in

several computer vision and machine learning applications, where instead of vectors,

one uses richer representations of data such as graphs, strings, or matrices. A class of

such structured data that has been gaining importance in computer vision is the class of

1

Symmetric Positive Definite (SPD) matrices, specifically as covariance matrices. These

matrices which offer a compact fusion of multiple features, they are by now preferred

data representations in several applications.

A covariance descriptor is nothing but the covariance matrix of features from an

image region. Mathematically,

Definition 1. Let Fi ∈ R
p, for i = 1, 2, · · · , N , be the feature vectors from the region

of interest of an image, then the Covariance Descriptor of this region C ∈ Sp
++ is

defined as:

C =
1

N − 1

N
∑

i=1

(Fi − µF)(Fi − µF)T (1)

where µF = 1
N

∑N
i=1 Fi, is the mean feature vector and Sp

++ is the space of p × p
Symmetric Positive Definite (SPD) matrices.

To bring out the importance of covariance matrices in computer vision, we con-

cisely review a few applications in which these data descriptors have found immense

success. SPD matrices are fundamental objects in Diffusion Tensor Imaging for map-

ping biological tissue structures, with applications to the diagnosis of neuro-psychiatric

illnesses including Alzheimer’s disease, brain atrophy, and dementia [1–3]. Covari-

ances provide a convenient platform for fusing multiple features, are robust to static

noise, and can be easily made invariant to image affine transformations, illumination

changes or changes in camera parameters. As a result they are used aplenty in multi-

camera object tracking applications [4,5]. Other important applications of covariances

include but not limited to human detection [6], image segmentation [7], texture seg-

mentation [8], robotics and autonomous vehicle navigation [9], robust face recogni-

tion [10], emotion recognition [11], structure tensor for background subtraction appli-

cations [12], and human action recognition [13]. Application of covariances as data

descriptors is not limited to computer vision; examples are speech recognition [14],

and acoustic compression [15].

However, these successful applications are burdened by a common problem: when-

ever distance or similarity computations with covariances are required, the correspond-

ing algorithms tend to slow down. This is because, covariances do not conform to the

Euclidean geometry, but rather form a Riemannian manifold. Data points on this man-

ifold are no more connected by straight lines, but rather geodesics along the curvature

of the manifold. As a result, computing similarity between covariance matrices is non-

trivial. But the choice of similarity measure is crucial, especially for a fundamental task

such as the Nearest Neighbor (NN) retrieval which forms the building block for many

applications. For example, for tracking the appearance of people in video surveillance,

the number of database points can lie in the millions, and without efficient similar-

ity computation, NN retrieval and the subsequent tracking are severely disadvantaged.

Standard NN retrieval techniques such as locality sensitive hashing [16] cannot be di-

rectly applied to covariance datasets without ignoring the manifold structure, resulting

in poor retrieval accuracy. Driven by these concerns, we take a closer look at similar-

ity computation for covariance matrices, for which we introduce the Jensen-Bregman

LogDet Divergence (JBLD). We discuss theoretical properties of JBLD and then apply

2

it to the task of rapid NN retrieval on several image databases. Experiments against

state-of-the-art techniques show the advantages afforded by JBLD.

This paper is organized as follows. We start with a review of several similarity

metrics on covariance matrices in Section 2. This is followed by an introduction to the

JBLD measure, and exposition of its properties in Section 3. Section 4 discusses the

application of JBLD for nearest neighbor retrieval on covariances. Towards this end,

we propose a kmeans clustering algorithm using JBLD in Section 4.1. Experiments

and results are presented in Section 5 followed by conclusion in Section 6.

Before we proceed with the paper, we briefly describe our notation. We refer to the

d × d space of Symmetric Positive Definite (SPD) matrices as Sd
++. At places where

the dimensionality of the matrix is unimportant, an SPD matrix X might be introduced

as X > 0. The notation Sd represents the space of d×d symmetric matrices. We use | |
to denote matrix determinant, Tr denotes the trace and ‖ ‖F for the matrix Frobenius

norm. Also, I refers to a d × d identity matrix.

2 Related Work

We recall some standard similarity measures for covariance matrices. The simplest but

naive approach is to view d × d covariance matrices as vectors in R
d(d+1)/2, whereby

the standard (dis)similarity measures of Euclidean space can be used (e.g., ℓp-distance

functions, etc.). Recall that covariance matrices, due to their positive definiteness struc-

ture, belong to a special category of symmetric matrices and form a Riemannian mani-

fold (which is a differentiable manifold associated with a suitable Riemannian metric).

Euclidean distances on vectorized covariances ignore this manifold structure leading

to poor accuracy [17, 18]. In addition, under this measure symmetric matrices with

non-positive eigenvalues are at finite distances to positive definite covariances. This is

unacceptable for a variety of applications, e.g. DT-MRI [17].

A more suitable choice is to incorporate the curvature of the Riemannian manifold

and use the corresponding geodesic length along the manifold surface as the distance

metric. This leads to the Affine Invariant Riemannian Metric (AIRM) [19, 20] which is

defined as follows: For X , Y in Sd
++,

DR(X,Y) := ‖log(X−1/2Y X−1/2)‖F, (2)

where log(·) is the principal matrix logarithm. This metric enjoys several useful the-

oretical properties, and is perhaps the most widely used similarity measure for covari-

ance matrices. As is clear from (2), symmetric matrices with nonpositive eigenvalues

are at infinite distances. The metric is invariant to inversion and similarity transforms.

Other properties of this metric can be found in [19]. Computationally, this metric can

be unattractive as it requires eigenvalue computations or sometimes even matrix loga-

rithms, which for larger matrices cause significant slowdowns. A few examples of such

applications using large covariances are: face recognition [10] (40 × 40), and emotion

recognition [11] (30 × 30).

Amongst the many measures that have been proposed to replace AIRM, a closely

related one is the Log-Euclidean Riemannian Metric (LERM). Considering the log-

Euclidean mapping log : Sd
++ → Sd, Arsigny et al. [17] observed that under this

3

mapping, the Lie group of SPD matrices is isomorphic and diffeomorphic (smooth

manifolds are mapped to smooth manifolds) to the space of symmetric matrices. That

is, the log is a bijection. Using this mapping, the paper introduces LERM as:

Dle(X,Y) := ‖log(X) − log(Y)‖F. (3)

On the positive side, LERM maps SPD matrices to a flat Riemannian space (of null

curvature) so that the ordinary Euclidean distances can be used. The metric is easy to

compute, and preserves a few important properties of the AIRM (such as invariance

to inversion and similarity transforms). In addition, from a practical point of view,

since this metric untangles the two constituent matrices from their generalized eigen-

values, the logarithms on each of these matrices can be evaluated offline, gaining a

computational edge over AIRM. As a result, LERM has found many applications in

visual tracking [21], stereo matching [22], etc. On the negative side, computing ma-

trix logarithms can dramatically increase the computational costs. The flattening of

the manifold as in LERM often leads to less accurate distance computations, affecting

application performance. A more important problem that one encounters when using

LERM is that its moments (gradients, Hessian, etc.) do not have closed forms. More-

over, it is computationally difficult even to approximate these moments due to the need

to find derivatives of matrix logarithms. The following proposition shows that LERM

is a lower bound to AIRM. This result will come useful later in this paper.

Proposition 1. For X,Y ∈ Sd
++, we have: Dle(X,Y) ≤ DR. Further, the equality

holds only when X and Y commute.

Proof. Since X,Y are positive matrices, we can write them in the exponential form

as X = eX and Y = eY respectively, where X and Y are symmetric matrices. Now,

recalling that the Riemannian metric DR is affine invariant, we can rewrite (2) in the

following equivalent form:

D2
R = Tr

((

log2(eY e−X)
))

(4)

Invoking the Golden-Thompson inequality [23] and the monotonicity of the log func-

tion, we have the following inequality from (4),

D2
R = Tr

(

log2
(

eY e−X
))

≥ Tr
(

log2
(

eY −X
))

= D2
le.

Similar to our approach, there have been previous attempts to use symmetrized f-

divergences from information theory into developing distances on SPD matrices. One

such idea is to view the SPD matrices as being the covariances associated with zero-

mean Gaussian distributions [18], and then use the symmetrized KL-Divergence Metric

(KLDM) as the distance between the distributions. This leads to the following defini-

tion of KLDM:

D2
kl(X,Y) :=

1

2
Tr
(

X−1Y + Y −1X − 2I
)

(5)

This measure does not require matrix eigenvalue computations, or logarithms, and at

the same time enjoys many of the properties of AIRM. On the negative side, the mea-

sure requires inversion of the constituent covariances, which can be slow (or can even

4

lead to instability when the data matrices are poorly conditioned). A bigger concern

being that KLDM can in fact overestimate the Riemannian metric as the following

proposition shows and thus can lead to poor accuracy.

Proposition 2. There exist X and Y ∈ Sd
++ such that Dkl > DR.

Proof. Let vi be the ith eigenvalue of X−1Y . Since vi is always positive, we can write

vi = eui for ui ∈ R. Then from the definitions of KLDM and AIRM, we have:

D2
kl =

d
∑

i=1

(

eui + e−ui

2

)

− 1

=
D2

R

2

d
∑

i=1

(

1 + 2
u2

i

4!
+ · · ·

)

− 1.

For a suitable choice of ui, we have the desired result.

A distance on the Cholesky factorization of the SPD matrices is presented in [24].

The idea is as follows: suppose X = L1L
T
1 and Y = L2L

T
2 represent the Cholesky

decomposition of X and Y respectively, with lower triangular matrices L1 and L2,

then the Cholesky distance is defined as:

DC(X,Y) = ‖L1 − L2‖F. (6)

Other similarity measures on covariance matrices may be found in [25]. Albeit their

easy formulations and properties close to those of AIRM, the above distances based on

f-divergences have not been very popular in SPD matrix based applications due to their

poor accuracy (as our experiments will later demonstrate).

In contrast to all these metrics, the similarity metric that we propose in this paper

is much faster to compute, as it depends only on the determinant of the input matrices,

and thus no eigenvalue computations are required. Moreover, as we will later see, it

turns out to be empirically also very effective.

We note that NN retrieval for covariance matrices itself is still an emerging area,

so literature on it is scarce. In [26], an attempt is made to adapt NN techniques from

vector spaces to non-Euclidean spaces, while [27] proposes an extension of the spectral

hashing techniques to covariance matrices. However, both these techniques are based

on a Euclidean embedding of the Riemannian manifold through the tangent spaces, and

then using LERM as an approximation to the true similarity.

3 Jensen-Bregman LogDet Divergence

We first recall some basic definitions and then present our similarity measure: the

Jensen-Bregman LogDet Divergence (JBLD). We remark that although this measure

seems natural and simple, to our knowledge it has not been formally discussed in detail

before. We alert the reader that JBLD should not be confused with its asymmetric

cousin: the so-called LogDet divergence [28].

5

At the core of our discussion lies the Bregman Divergence dφ : S × relint(S) →
[0,∞), which is defined as

dφ(x, y) := φ(x) − φ(y) − 〈x − y,∇φ(y)〉 , (7)

where φ : S ⊆ R
d → R is a strictly convex function of Legendre-type on int(dom S) [29].

From (7) the following properties of dφ(x, y) are apparent: strict convexity in x; asym-

metry; non-negativity; and definiteness (i.e., dφ = 0, iff x = y). Bregman diver-

gences enjoy a host of useful properties [29, 30], but often their lack of symmetry and

sometimes their lack of triangle-inequality can prove to be hindrances. Consequently,

there has been substantial interest in considering symmetrized versions such as Jensen-

Bregman divergences [31–33], where assuming s = (x + y)/2,

Jφ(x, y) :=
1

2

(

dφ(x, s) + dφ(s, y)
)

, (8)

or even variants that satisfy the triangle inequality [33, 34].

Both (7) and (8) can be naturally extended to matrix divergences (over Hermitian

matrices) by composing the convex function φ with the eigenvalue map λ, and replac-

ing the inner-product in (7) by the trace. We focus on a particular matrix divergence,

namely the Jensen-Bregman LogDet Divergence, which is defined for X , Y in Sd
++ by

Jℓd(X,Y) := log

∣

∣

∣

∣

X + Y

2

∣

∣

∣

∣

− 1

2
log |XY |. (9)

where | · | denotes the determinant; this divergence is obtained from the matrix version

of (8) by using φ(X) = − log |X| as the seed function.

3.1 Properties

For X,Y,Z ∈ Sd
++ and invertible matrices A and B, we have the following properties

(see [35] for details and proofs):

1. Jℓd(X,Y) ≥ 0 (nonnegativity)

2. Jℓd(X,Y) = 0 iff X = Y (definiteness)

3. Jℓd(X,Y) = Jℓd(Y,X) (symmetry)

4.
√

Jℓd(X,Y) ≤
√

Jℓd(X,Z) +
√

Jℓd(Z, Y) (triangle inequality; see [35])

5. Jℓd(AXB,AY B) = Jℓd(X,Y) (affine invariance)

6. Jℓd(X
−1, Y −1) = Jℓd(X,Y) (invariance to inversion)

We would like to remark that Jℓd can also be written as follows:

Jℓd(X,Y) = Tr

(

log

(

X + Y

2

)

− 1

2
(log XY)

)

(10)

where log is the matrix logarithm. Although this construction of Jℓd makes it slightly

computationally expensive, such a formulation could be suitable for some applications.

6

Theorem 3 (Non-Convexity). Assuming X,Y > 0, for a fixed Y , Jℓd(X,Y) is convex

for X ≤ (1 +
√

2)Y and concave for X ≥ (1 +
√

2)Y .

Proof. Taking the second derivative of Jℓd(X,Y) with respect to X , we have

∇2
XJℓd(X,Y) = −(X + Y)−1 ⊗ (X + Y)−1 +

X−1 ⊗ X−1

2
. (11)

This expression is positive for X ≤ (1+
√

2)Y and negative for X ≥ (1+
√

2)Y .

3.2 Nearest Isotropic Matrix

As we alluded to earlier, diffusion tensor imaging is the process of mapping diffusion of

water molecules in the brain tissues and helps in the diagnosis of neurological disorders

non-invasively. When the tissues have an internal fibrous structure, water molecules in

these tissues will diffuse rapidly in directions aligned with this structure. Symmetric

positive definite matrices are important mathematical objects in this field useful in the

analysis of such diffusion patterns [1]. Anisotropic index is a useful quantity that is

often used in this area [18], which is the distance of a given SPD matrix from its

Nearest Isotropic Matrix (NIM). Mathematically, the NIM αI (α > 0) from a given

tensor P > 0 with respect to a distance measure D(., .) is defined as:

min
α>0

D(αI, P) (12)

There are closed form expressions for α when D is AIRM, LERM, or KLDM

(see [18] for details). Unfortunately, for Jℓd there is no closed form for this. In the fol-

lowing, we investigate this front of our metric and propose a few theoretical properties.

Theorem 4. Suppose P ∈ Sd
++ and let S = αI be such that Jℓd(P, S) is convex

(see Theorem 3). Then the NIM to P is the minimum positive root of the following

polynomial equation:

p(α) :=dαd + (d − 2)
∑

i

λiα
d−1 + (d − 4)

∑

i,j,i 6=j

λiλjα
d−2

+ · · · + (2 − d)
∑

i

∏

i6=j

λjα − d
∏

i

λi = 0, (13)

where λi, i = 1, 2, · · · , d are the eigenvalues of P .

Proof. Using the definition of Jℓd in (12), and applying the assumption that Jℓd is

convex, at optimality we have
∂Jℓd(αI,P)

∂α = 0. This leads to:

1

α
=

2

d

d
∑

i=1

1

α + λi
.

Rearranging the terms, we have the polynomial equation in 13. Since the coefficient

of αd−1 is always positive (for d > 2), there must always exist at least one positive

root.

7

Corollary 5. When d = 2, we have α =
√

|P |, which is the same as NIM for the

Riemannian distance.

Since in DT-MRI, generally 3 × 3 SPD matrices are used, we show this case next.

Lemma 6. Let P ∈ Sd
++ and suppose ‖P‖2 < 1, then

1 + Tr (P) /d

1 + Tr (P−1) /d
> |P | . (14)

Proof. Suppose P ∈ Sd
++ and ‖P‖2 < 1, then Tr(P) < d. Suppose λi, i =

1, 2, · · · , d represents the eigenvalues of P , we have the following to prove from the

lemma:

d + Tr(P)

d |P | +∑i

∏

j 6=i λiλj
> 1 (15)

Since |P | < Tr(P)/d (due to AM-GM inequality) and since
∑

i

∏

j 6=i λiλj < d, we

have the desired result.

Theorem 7. Let P ∈ S3
++, and if S = αI, α > 0 is the NIM to P , then α ∈ (0, 1).

Proof. Substituting d = 3 in (13), we have the following third degree polynomial

equation:

p(α) := 3α3 + Tr(P)α2 − |P |Tr(P−1)α − 3 |P | = 0 (16)

Analyzing the coefficients of p(α) shows that only one root is positive. Now, we have

p(0) < 0. Applying Lemma 6, we have p(1) > 0, which concludes that the smallest

positive root lies in (0, 1).

3.3 Connections to Other Metrics

We summarize below some of the interesting connections Jℓd has with the standard

metrics on covariances.

Theorem 8 (Relations).
(i) Jℓd ≤ D2

R

(ii) Jℓd ≤ D2
kl

Proof. Let vi = λi(XY −1). Since X , Y ∈ Sd
++, the eigenvalues vi are also positive,

whereby we can write each vi = eui for some ui ∈ R. Using this notation, the AIRM

may be rewritten as DR(X,Y) = ‖u‖2, and the JBLD as

Jℓd(X,Y) =
∑d

i=1
(log(1 + eui) − ui/2 − log 2), (17)

where the equation follows by observing that Jℓd(X,Y) = log |I+XY −1|− 1
2 log |XY −1|−

log 2d.

8

To prove inequality (i), consider the function f(u) = u2−log(1+eu)+u/2+log 2.

This function is convex since its second derivative

f ′′(u) = 2 − eu

(1 + eu)2
,

is clearly nonnegative. Moreover, f attains its minimum at u∗ = 0, as is immediately

seen by solving the optimality condition f ′(u) = 2u − eu/(1 + eu) + 1/2 = 0. Thus,

f(u) ≥ f(u∗) = 0 for all u ∈ R, which in turn implies that

∑d

i=1
f(ui) = D2

R(X,Y) − Jℓd(X,Y) ≥ 0. (18)

Similarly to prove inequality (ii), consider the function g(u) = D2
kl − Jℓd, which

expands to:

g(u) =
1

2
(eu +

1

eu
) − log(1 + eu) +

u

2
+ log 2 − 1 (19)

Going by the same steps as before, it is straight-forward to show that g(u) is convex

and attains its minimum when u = 0, proving the inequality.

Theorem 9 (upper bound). If 0 ≺ mI � X,Y � MI , then

D2
R(X,Y) ≤ 2 log(M/m)(Jℓd(X,Y) + γ), (20)

where γ = d log 2.

Proof. Observe that

∑d

i=1
(log(1 + eui) − ui/2 − log 2) ≥

∑d

i=1
(|ui|/2 − log 2),

which implies the bound

Jℓd(X,Y) + d log 2 ≥ 1

2
‖u‖1. (21)

Since uT u ≤ ‖u‖∞‖u‖1 (Hölder’s inequality), using (21) we immediately obtain the

bound

D2
R(X,Y) = ‖u‖2

2 ≤ 2‖u‖∞(Jℓd + γ), (22)

where γ = d log 2. But mI � X,Y � MI implies that ‖u‖∞ ≤ log(M/m), which

concludes the proof.

Our next result touches upon a condition when Jℓd < D2
le. A more general treat-

ment of this relationship is outside the scope of this paper, mainly because the gradient

and the Hessian of Dle do not have closed forms.

Theorem 10. If X,Y ∈ Sd
++ commute, then Jℓd ≤ D2

le.

Proof. We use the fact that when X,Y commute, Dle(X,Y) = DR(X,Y) (See

Proposition 1). Now, using the connection between AIRM and JBLD (refer Theo-

rem 8), we have the result.

9

3.4 JBLD Geometry

In Figure 1, we plot the three dimensional balls (isosurfaces) associated with JBLD

for various radii (0.1, 0.5 and 1) and centered at the identity tensor. We also compare

the JBLD ball with the isosurfaces of Frobenius distance, AIRM and KLDM. As is

expected Frobenius distance is isotropic and thus its balls are spherical, while AIRM

and KLDM induce convex balls. Against these plots, and as was pointed by Theorem 3,

the isosurfaces of JBLD are convex in some range while become concave as the radius

goes large.

Figure 1: Isosurface plots for various distance measures. First, distances for arbitrary

three dimensional covariances from the identity matrix are computed, and later isosur-

faces corresponding to fixed distances of 0.1, 0.5 and 1 are plotted. The plots show the

surfaces for: (from left) Frobenius distance, AIRM, KLDM, and JBLD respectively.

3.5 Computational Advantages

The greatest advantage of Jℓd against the Riemannian metric is its computational speed:

Jℓd requires only computation of determinants, which can be done rapidly via 3 Cholesky

factorizations (for X + Y , X and Y), each at a cost of (1/3)d3 flops [36]. Computing

DR on the other hand requires generalized eigenvalues, which can be done for positive-

definite matrices in approximately 4d3 flops. Thus, in general Jℓd is much faster (see

also Table 1). The computational advantages of Jℓd are much more impressive when

comparing evaluation of gradients1. Table 2 shows that computing ∇Jℓd can be even

more than 100 times faster than ∇DR. This speed proves critical for NN retrieval, or

more generally when using any algorithm that depends on gradients of the similarity

measure, e.g., see [37] and the references therein. Table 3 provides a summary of the

various metrics, their gradients and computational complexities.

4 Fast Nearest Neighbor Retrieval using JBLD

Now we turn to the key application that originally motivated us to investigate Jℓd:

Nearest Neighbor (NN) retrieval for covariance matrices. Here, we have a dataset

{S1, . . . , Sn} of d × d covariance matrices that we must organize into a data structure

1From a technical point, Jℓd computation for matrices over d = 13 was seen faster when the determinants

were computed using the Cholesky decomposition.

10

d DR Jℓd

5 .025 ± .012 .030 ± .007
10 .036 ± .005 .040 ± .009
15 .061 ± .002 .050 ± .004
20 .085 ± .006 .061 ± .009
40 .270 ± .332 .123 ± .012
80 1.23 ± .055 .393 ± .050

200 8.198 ± .129 2.223 ± .169
500 77.311 ± .568 22.186 ± 1.223

1000 492.743 ± 15.519 119.709 ± 1.416

Table 1: Average times (millisecs/trial) to compute function values; computed over

10,000 trials to reduce variance.

d ∇XD2
R(X,Y) ∇XJℓd(X,Y)

5 0.798 ± .093 .036 ± .009
10 2.383 ± .209 .058 ± .021
20 7.493 ± .595 .110 ± .013
40 24.899 ± 1.126 .270 ± .047
80 99.486 ± 5.181 .921 ± .028

200 698.873 ± 39.602 8.767 ± 2.137
500 6377.742 ± 379.173 94.837 ± 1.195

1000 40443.059 ± 2827.048 622.289 ± 37.728

Table 2: Average times (millisecs/trial) to compute gradients; computed over 1000

trials to reduce variance.

to facilitate rapid NN retrieval. Towards this end, we chose to use the metric tree

data structure as we wanted to show the performance on an exact NN algorithm for

covariances and for which approximations can be easily effected for faster searches. A

key component of the metric tree is a procedure to partition the data space into mutually

exclusive clusters, so that heuristics such as branch and bound can be applied to prune

clusters that are unlikely to occupy candidate neighbors to a query. To this end, we

derive below a kmeans algorithm on Jℓd which will later be used to build the metric

tree on covariances.

metric D2(X,Y) FLOPS Gradient(∇X)

AIRM ‖log(X−1/2Y X−1/2)‖2
F 4d3 2X−1 log(XY −1)

LERM ‖log(X) − log(Y)‖2
F

8
3d3 2X−1 (log X − log Y)

KLDM 1
2 Tr

(

X−1Y + Y −1X − 2I
)

8
3d3 Y −1 − X−1Y X−1

JBLD log
∣

∣

X+Y
2

∣

∣− 1
2 log |XY | d3 (X + Y)−1 − 1

2X−1

Table 3: A comparison of various metrics on covariances and their computational com-

plexities against Jℓd.

11

4.1 K-Means with Jℓd

In this section, we derive a K-Means clustering algorithm based on Jℓd. Let S1, S2, · · · , Sn

be the input covariances that we need to be clustered. A standard K-Means algorithm

gives rise to the following optimization problem:

min
C1,C2,··· ,CK

K
∑

k=1

∑

S∈Ck

Jℓd(Xk, S), (23)

where Xk is the centroid of cluster Ck. Following the traditional K-Means algorithm,

we can alternate between the centroid computation and the clustering stages to mini-

mize (23). The only significant step then amounting to the computation of the centroid

for the kth cluster, which can be written as:

F := min
Xk

∑

S∈Ck

Jℓd(Xk, S) (24)

:= min
Xk

∑

S∈Ck

log |Xk + S

2
| − 1

2
log |XkS| (25)

Unfortunately, as we saw earlier, Jℓd is neither a Bregman divergence, nor is it convex

and thus we cannot use the traditional centroid computation. The good news is that, we

can write (25) as the sum of a convex function Fvex(Xk, S) = −∑S∈Ck

|Ck|
2 log |Xk|

and a concave term Fcave(Xk, S) =
∑

S∈Ck
log |Xk+S

2 |. Such a combination of con-

vex and concave objectives can be efficiently solved using Majorization-Minimization

through the Convex-ConCave Procedure (CCCP) [38]. The main idea of this procedure

is to approximate the concave part of the objective by its first order Taylor approxima-

tion around the current best estimate Xt
k; that is, for the (t + 1)st step:

Xt+1
k = argmin

Xk

Fvex(Xk, S) − XT
k ∇Xk

Fcave(X
t
k, S). (26)

Substituting (26) in (25), later taking the gradient of (25) with respect to Xk and setting

it to zero (recall that now we have a convex approximation to (25)), we have:

∑

S∈Ck

∇Xk
Fvex(Xt+1

k , S) = −
∑

S∈Ck

∇Xk
Fcave(X

t
k, S). (27)

Expanding the gradient terms for Jℓd, we have the following fixed-point iteration:

Xt+1
k =

[

1

|Ck|
∑

S∈Ck

(

S + Xt
k

2

)−1
]−1

. (28)

Convergence of the CCCP procedure is tied to the compactness of the solution space.

Unfortunately, the space of SPD matrices is of non-compact type [39] with a non-

positive sectional curvature; the latter property implying that the barycenter of a set of

covariances in the respective Riemannian manifold need not be unique [40]. Thus, in

the following we investigate the convergence of the fixed point iteration in (28).

12

Lemma 11. The function f(X) = X−1 for X ∈ Sd
++ is matrix convex, i.e., for

X,Y ∈ Sd
++ and for t ∈ [0, 1],

f(tX + (1 − t)Y) ≤ tf(X) + (1 − t)f(Y). (29)

Proof. See Exercise V.1.15 [23] for details.

Lemma 12. If X,Y ∈ Sd
++ and suppose X ≥ Y , then X−1 ≤ Y −1.

Proof. See Corollary 7.7.4 [41].

Theorem 13. Let S1, S2, · · · , Sn be the input covariances and let X∗ be the centroid

returned found by (28). Then X∗ lies in the compact interval

(

1

n

n
∑

i=1

S−1
i

)−1

≤ X∗ ≤ 1

n

n
∑

i=1

Si (30)

Proof. Proving the left inequality: Applying Lemma 11 to (28), we have:

X−1 ≤ 1

n

n
∑

i=1

(

S−1
i + X−1

2

)

(31)

≤ 1

n

n
∑

i=1

S−1
i

2
+

1

2
X−1. (32)

Now, applying Lemma 12, the result follows.

Proving the right inequality: As one can see, the right side of (28) is essentially

the harmonic mean of X+Si

2 for i = 1, 2, · · · , n. Using the fundamental inequality

that harmonic mean is always less than or equal to the arithmetic mean, we have the

result.

Theorem 14. Let {Xt} (for t ≥ 1) be the sequence of successive iterates generated as

per (28). Then, Xt → X∗, where X∗ is a stationary point of (25).

Proof. It is clear that Fvex and −Fcave are strictly convex functions and −∇Fcave is

continuous. Further, from Theorem 13 it is clear that the solution lies in a compact

interval inside Sd
++. Thus, following the conditions of convergence stipulated in [42]

(CCCP-II, Theorem 8), the iterations in (28) converges for a suitable initialization in-

side the compact set.

4.2 NN Using Metric Tree

As we mentioned earlier, we decided to use a metric tree for the task of efficient NN

retrieval on covariance datasets. Metric Trees (MT) [43] are one of the fundamental tree

based algorithms for fast NN retrieval useful when the underlying similarity measure is

a metric. NN using the MT involves two steps: (i) Building the tree, and (ii) Querying

the tree. We discuss each of these steps below.

13

4.2.1 Building MT

To build the MT, we perform top-down partitioning of the input space by recursively

applying the JBLD K-Means algorithm (introduced above). Each partition of the MT

is identified by a centroid and the ball radius. For n data points, and assuming we bi-

partition each cluster recursively, the total build time of the tree is O(n log n) (ignoring

the cost for kmeans itself). To save time, we stop partitioning a cluster when the number

of points in it goes below a certain threshold; this threshold is selected as a balance

between the computational time to do exhaustive search on the cluster elements against

doing k-means on it.

4.2.2 Querying using MT

Given a query point q, one first performs a greedy binary search for the NN along

the most proximal centroids at each level. Once a leaf partition is reached, exhaustive

search is used to localize to the candidate centroid Xc. Then one backtracks to check if

any of the sibling nodes (that were temporarily ignored in the greedy search) contain a

data point that is closer to q than Xc. To this end, we solve the following optimization

problem on each of the sibling centroids C:

D(Xc, q) > min
X;d(X,C)=R

D(X, q) (33)

where X is called the projection of q onto the ball with centroid C, radius R and D is

some distance function. If (33) is satisfied, then the sibling node should be explored,

otherwise it can be pruned. When D is a metric, (33) has a simple solution utilizing

the triangle inequality as is described in [44]. The mechanism can be extended to

retrieve k-NN by repeating the search ignoring the (k-1) NNs already retrieved. This

can be efficiently implemented by maintaining a priority queue of potential sub-trees

centroids and worst case distances of the query to any candidate node in this sub-tree,

as described in [43].

5 Experiments

We are now ready to describe our experimental setup and results to substantiate the

effectiveness of Jℓd. We first discuss the performance metric on which our experiments

are based, later providing simulation results exposing various aspects of our metric,

followed by the results on four real-world datasets. All algorithms were implemented

in MATLAB and tested on a machine with 3GHz single core CPU and 4GB RAM.

5.1 Performance Metric

Accuracy@K: Suppose we have a covariance dataset D and a query set Q. Accu-

racy@K describes the average accuracy when retrieving K nearest covariances from

D for each item in Q. Suppose GK
q stands for the ground truth label subset associated

with the qth query, and if MK
q denotes the label subset associated with the K nearest

14

covariances found using a metric M for the query q, then we formally define:

Accuracy@K =
1

|Q|
∑

q∈Q

|GK
q ∩ MK

q |
|GK

q | . (34)

Note that Accuracy@K as defined in (34) subsumes the standard performance metrics:

precision and recall. Most often we work with K = 1, in which case we will drop the

suffix and will refer as Accuracy. Since some of the datasets used in our experiments

do not have ground truth data available, the baselines for comparison were decided via

a linear scan using the AIRM metric as this metric is deemed the state-of-the-art on

covariance data.

5.2 Simulations

Before we delve into the details of our experiments, we highlight here the base ex-

perimental configurations that we used for all the simulation experiments. Since there

are a variety of code optimizations and offline computations possible for the various

metrics, we decided to test all the algorithms with the base implementation as provided

by MATLAB. An exception here are the experiments using LERM. It was found that

computing LERM projecting the input matrices into the log-Euclidean space (through

matrix logarithms) resulted in expensive computations, as a result of which the perfor-

mances were incomparable with the setup used for other metrics. Thus, before using

this metric, we took the logarithm of all the covariances offline.

For the NN experiments, we used a metric tree with four branches and allowed a

maximum of 100 data points at the leaf nodes. With regard to computing the cluster

centroids (for k-means), LERM and FROB metrics used the ordinary Euclidean sample

mean, while AIRM used the Frechet mean using the iterative approximation algorithm

described in [45]. The centroid for KLDM boils down to computing the solution of

a Riccati equation as described in [46]. For the simulation experiments, we used the

results produced by AIRM as the ground truth.

Now we are ready to describe our base configuration for the various simulation

experiments. We used 1K covariances of 10D with 50 true number of clusters as the

dataset and a collection of 100 covariances as the query set. The plots that we are about

to show resulted from average performances by repeating the experiments 100 times

using different database and query sets. Next, we consider the various experiments and

present the results.

5.2.1 Accuracy Against Noise

Given that the metrics on covariances are nonlinear, the primary goal of this experiment

is to validate the robustness of JBLD against noise in the covariance descriptors for the

task of NN retrieval. This is especially useful when considering that our data can be

poorly conditioned such that small perturbations of a poorly conditioned data matrices

can lead to large metric distances, which for some applications might be uncalled for.

Towards this end, we created a base set of 1K covariances from a set of simulated fea-

ture vectors. Subsequently, Gaussian noise of varying magnitude (relative to the signal

15

strength) was added to the feature vectors to obtain a set of 100 noisy covariances. The

base covariances were used as queries while the noisy ones as the database. A linear

scan through the data using the Riemannian metric to measure nearness defined the

ground truth. Fig. 2 shows the average accuracy values for decreasing SNR for three

different covariance dimensions (10D, 20D and 40D). It is clear that JBLD is more

robust than LERM and KLDM, at the same time yields accuracy almost close to the

baseline Riemannian metric, irrespective of the dimension of the matrix. It is to be

noted that a retrieval using the Frobenius distance (FROB) is clearly seen to perform

poorly. We would also like to highlight that we noticed a small drop in the accuracy

of KLDM (as seen in Figure 2(c)) as the data dimensionality increases, which we sus-

pect is due to the poor conditioning of the data matrices as the dimensionality grows,

impacting the matrix inversions.

5.2.2 Effect of Cluster Size

This section analyzes the scalability of Jℓd to an increasing number of true data clusters

(given fixed database size). The basic goal of this experiment is to expose the clustering

performance of our Jℓd-kmeans algorithm against the kmeans based on other metrics.

The performance comparison is analyzed on three aspects: (i) the average accuracy of

NN retrieval, (ii) average metric tree creation time (which includes kmeans clustering

for each internal node of the metric tree), and (iii) average search time using a metric

tree. Figure 3 shows results from this experiment. There are a few important properties

of the metrics that are revealed by these plots: (i) the accuracy of Jℓd matches per-

fectly with that of AIRM (note that AIRM is used as the ground truth), (ii) assuming

the metric tree is constructed optimally, the search time for AIRM and Jℓd are com-

parable, and (iii) (which is the most important) the metric tree construction for AIRM

almost increases quadratically with increasing number of true clusters, while that for

other metrics is more favorable. Together, the three plots substantiate the superior per-

formance of Jℓd. Later in this paper, we will get back to illustrating these claims on

real-data.

5.2.3 Effect of Matrix Dimension

One of the major motivations for proposing Jℓd as a replacement for existing metrics

on covariances is its scalability to increasing matrix dimensions. Figure 4 shows the

results of accuracy, metric tree creation time and search time using a metric tree. As is

clear from the plots, the metric tree creation time increases at many orders of magni-

tude worse with AIRM than with other metrics, while Jℓd performs better at accuracy

and retrieval time against other metrics. Similar to what we noticed in Figure 2, the

accuracy of KLDM worsens as the matrix dimension increases.

5.2.4 Effect of Increasing Database Size

This experiment shows the performance of Jℓd against searching in larger datasets.

Towards this end, we kept the number of true clusters constant and same as in other

experiments, but increased the number of data points (covariances) associated with

16

each cluster. The results of this experiment in terms of accuracy, tree buildup time

and retrieval performance is shown in Figure 5. Similar to the previous plots, it is

clear that Jℓd provides promising results in all the three properties, while maintaining

nearly perfect retrieval accuracy, showing that it does not get distracted from the nearest

neighbor even when the datasize increases.

5.3 Real Data Experiments

Continuing upon the simulated performance figures of Jℓd against other metrics, this

subsection provides results on real-data. First, we will showcase a few qualitative re-

sults from some important applications of covariances from literature. We will demon-

strate that JBLD outperforms other metrics in accuracy not only when AIRM is as-

sumed to be the ground truth, but also in situations when we know the correct ground

truth of data as provided by an external agency or human labeling.

5.3.1 Tracking using Integral Images

People appearance tracking has been one of the most successful applications using co-

variances. We chose to experiment with some of the popular tracking scenarios: (i) face

tracking under affine transformations, (ii) face tracking under changes in pose, and (iii)

vehicle tracking. For (i) and (ii), the tracking dataset described in [47] was used, while

the vehicle tracking video was taken from the ViSOR repository2. The images from

the video were resized to 244 × 320 for speed and integral images computed on each

frame. An input tracking region was given at the beginning of the video, which is then

tracked in subsequent images using the integral transform, later computing covariances

from the features in this region. We used the color and the first order gradient features

for the covariances. Figures 6(a),6(b), and 6(c) show qualitative results from these ex-

periments. We compared the window of tracking for both AIRM and JBLD, and found

that they always fall at the same location in the video (and hence not shown).

5.3.2 Texture Segmentation

Another important application of covariances has been in texture segmentation [4]

which has further application in DT-MRI, background subtraction [12], etc. In Fig-

ure 6(e), we present a few qualitative results from segmentation on the Brodatz texture

dataset. Each of the images were a combination of two different textures, the objective

being to find the boundary and separate the classes. We first transformed the given

texture image into a tensor image, where each pixel was replaced by a covariance ma-

trix computed using all the pixels in a p × p patch around the given pixel. The 5 × 5
covariances were computed using features such as image coordinates of the pixels in

this patch, image intensity at each pixel, and first order moments. Next, we applied

the JBLD kmeans algorithm for the texture mixture, later segregating the patches using

their cluster labels.

2http://www.openvisor.org

17

−10 −8 −6 −4 −2 0
40

50

60

70

80

90

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a) n=10x10

−10 −8 −6 −4 −2 0
20

40

60

80

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(b) n=20x20

−10 −8 −6 −4 −2 0
20

40

60

80

100

SNR (dB)

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(c) n=40x40

Figure 2: Accuracy against increasing noise for various matrix dimensions n; (a) n = 10× 10,

(b) n = 20× 20, (c) n = 40× 40. It is assumed that the AIRM is the ground truth. MFD stands

for the Matrix Frobenius Distance.

50 100 150 200 250
40

50

60

70

80

90

100

true clusters

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

50 100 150 200
0

20

40

60

80

100

120

true clusters

A
v
g
.

tr
e
e
 c

re
a
ti
o
n
 t

im
e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

50 100 150 200 250
0

0.05

0.1

0.15

0.2

true clusters

A
v
g
.

s
e
a
rc

h
 t

im
e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Figure 3: Fixed dataset size of 1K, query size of 100 and for increasing number of true clus-

ters: 3(a) accuracy of search, 3(b) time to create the metric tree, and 3(c) speed of retrieval using

the metric tree. The average is computed over 100 trials.

10 20 30 40 50 60 70
0

20

40

60

80

100

Matrix Dimension

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Matrix Dimension

A
v
g
.

tr
e
e
 c

re
a
ti
o
n
 t

im
e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

10 20 30 40 50 60 70
0

1

2

3

4

Matrix Dimension

A
v
g
.

s
e
a
rc

h
 t

im
e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Figure 4: Fixed dataset size of 1K, query size of 100 and for increasing covariance matrix

dimensions: 4(a) accuracy of search, 4(b) time to create the metric tree, and 4(c) speed of

retrieval using the metric tree. The average is computed over 100 trials.

0 2000 4000 6000 8000 10000
20

40

60

80

100

Dataset size (#covariaces)

A
v
g
.
A

c
c
u
ra

c
y
 (

%
)

LERM
KLDM
JBLD
FROB

(a)

0 2000 4000 6000 8000 10000
0

100

200

300

400

Dataset size (#covariaces)

A
v
g
.

tr
e
e
 c

re
a
ti
o
n
 t

im
e
 (

s
)

LERM
KLDM
AIRM
JBLD
FROB

(b)

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

Dataset size (#covariaces)

A
v
g
.
s
e
a
rc

h
 t
im

e
 (

m
s
)

LERM
KLDM
AIRM
JBLD
FROB

(c)

Figure 5: Fixed number of true number clusters, query size of 100 and but increasing the

covariance dataset size: 5(a) accuracy of search, 5(b) time to create the metric tree, and 5(c)

speed of retrieval using the metric tree. The average is computed over 100 trials.

18

(a)

(b)

(c)

(d)

(e)

Figure 6: Tracking using JBLD on covariances computed from integral images: (a) affine face

tracking, (b) tracking face with pose variations, (c), (d) vehicle tracking, and (e) shows results

from texture segmentation. The red rectangle in the first image in each row shows the object

being tracked. The yellow rectangles in the subsequent images are the nearest objects returned

by JBLD. (e) shows sample results from three texture segmentation experiments. The left image

in each pair shows the original mixed texture image and the right image in each pair shows the

output of segmentation, with one texture masked out.

19

5.4 Real-Data NN Experiments

Now we are ready to present quantitative results on real-world datasets. For real-world

experiments that are described in the subsequent sections, we use four different vision

applications for which covariance descriptors have shown produce promising results:

(i) texture recognition, (ii) action recognition, (iii) face recognition, and (iv) people

appearance tracking. We briefly review below each of these datasets and how covari-

ances were computed for each application. See Figure 7 for sample images from each

dataset.

Texture Dataset: Texture recognition has been one of the oldest applications of co-

variances spanning a variety of domains, e.g., DT-MRI, satellite imaging, etc. The

texture dataset for our experiments was created by combining the 160 texture images

in the Brodatz dataset and the 60 texture classes in the CURET dataset [48]. Each

texture category in the Brodatz dataset consisted of one 512 × 512 image. To create

the covariances from these images, we followed the suggestions in [4]. First patches of

size 20× 20 were sampled from random locations in each image, later using the image

coordinate of each pixel in a patch, together with the image intensity, and the first order

gradients to build 5D features. The covariance matrices computed such feature vectors

on all the pixels inside the patch constituted one such data matrix and approximately 5K

covariances from all the texture images in all the categories from the Brodatz dataset.

To build a larger dataset for textures, we combined this dataset with texture covariances

from the CURET dataset [48] which consists of 60 texture categories, with each tex-

ture having varying degrees of illumination and pose variations. Using the RGB color

information, together with the 5 features described before, we created approximately

27K covariances each of size 8 × 8. To have covariances of the same dimensionality

across the two datasets, we appended a unit matrix of small diagonal for the RGB to

the covariances computed from the Brodatz dataset.

Action Recognition Dataset: Activity recognition via optical flow covariances is a

recent addition to the family of applications with covariance descriptors, and shows

great promise. For every pair of frames in a given video, the optical flow is initially

computed; the flow is then threshold and 12D feature vectors were extracted from each

non-zero flow location (refer [13] for details on this feature vector). It is proposed that

the covariance computed from the optical flow features captures the profile of that ac-

tivity uniquely. To build the optical flow covariance dataset, we used a combination of

activity videos from the Weizmann activity dataset [49], the KTH dataset3 and the UT

tower dataset [50]. This resulted in a large dataset of approximately 63.5K covariances

each of dimension 12 × 12.

Face recognition: Face recognition is still an active area of research in computer vi-

sion and there has been many effective ideas suggested. In [10], the idea of covariance

descriptors was extended for recognizing faces, where each face image was convolved

with 40 Gabor filters, the outputs of which were then collated to form 40 × 40 covari-

ances. Although the covariance descriptors are not the state-of-the-art in face recogni-

tion, our choice of this application for this paper is to analyze the performance of our

metric for real-data of large dimensions. Towards this end, we used the images from

the Faces in the Wild dataset [51], which consists of approximately 31K face images

3http://www.nada.kth.se/cvap/actions/

20

mainly collected from newspapers. We used the same approach as in [10] for comput-

ing the covariances, along with incorporating the RGB color information of each pixel

and the first and second order intensity gradients to form 48 × 48 covariances.

People Appearances: An important real-time application of covariances is people

tracking from surveillance cameras [4]. To analyze the suitability of our metric for such

applications, we illustrate empirical results on tracking data. For this experiment, we

used videos of people appearances tracked using multiple cameras4. The background

was first learned using a mixture of Gaussians, then the silhouettes of people in the

scene were extracted. The first and second order image gradients along with the color

information were used to obtain approximately 10K covariances of size 8 × 8.

Ground Truth: Note that the texture dataset, the action dataset and the faces dataset

have ground truth labels associated with each data point and thus for accuracy compar-

isons, we directly use this class label of the query set against the class label associated

with the NN found by a metric. Unfortunately, the people appearances dataset does not

have a ground truth and thus we use the label of the NN found by AIRM as the ground

truth.

(a)

(b)

(c)

Figure 7: Sample images from the various datasets used in our real world data experiments: 7(a)

texture images from the Brodatz dataset, 7(b) Faces in the Wild dataset, and 7(c) people appear-

ance tracking dataset.

5.5 NN via Exhaustive Search

Here we present our experiments and results for NN via exhaustive search using the

various metrics. Exhaustive search is important from a practical point of view as most

4http://cvlab.epfl.ch/research/body/surv/#data

21

Dataset(size) AIRM JBLD LERM KLDM CHOL FROB

Texture (25852)

Avg. Accuracy(%) 85.5 85.5 82.0 85.5 63.0 56.5

Avg. Time (s) 1.63 1.50 1.16 (4.21) 1.71 1.81 1.21

Activity(62425)

Avg. Accuracy(%) 99.5 99.5 96.5 99.5 92.0 82.5

Avg. Time (s) 4.04 3.71 2.42 (10.24) 4.34 4.98 2.53

Faces Wild(29700)

Avg. Accuracy(%) 32.5 33.0 30.5 31.5 29.5 26.5

Avg. Time (s) 10.26 4.68 2.44 (24.54) 10.33 12.13 2.13

Appearance (8596)

Avg. Accuracy(%) – 100 83.3 70.0 91.0 52.1

Avg. Time (s) 0.44 0.40 0.17 (1.7) 0.42 0.28 0.15

Table 4: Performance of JBLD on different datasets and against various other metrics for 1-NN

query using exhaustive search averaged over 1K queries. Note that for the appearance dataset,

we used AIRM as the baseline (and thus the accuracy not shown). Avg. time is in seconds for

going over the entire dataset once to find the NN. The time taken for the offline log-Euclidean

projections is shown in brackets under LERM.

real-time applications (such as tracking) cannot spend time in building a metric tree.

In this section, we analyze the performance of JBLD in terms of accuracy and retrieval

speed on each of the datasets we described in the previous section.

5.5.1 Accuracy

We divided each of the datasets into database and query sets, and then computed ac-

curacy against either the available ground truth or the baseline computed using AIRM.

The query set typically consisted of 1K covariances. The results are shown in Table 4.

Clearly, JBLD outperforms all the other metrics in accuracy, without compromising

much on the speed of retrieval. In the case of LERM, we had to vectorize the co-

variances using the log-Euclidean projections for tractability of the application. The

time taken for this operation for each of the datasets is also shown in the table. Since

this embedding uses the eigen decomposition of the matrices, this operation is seen

to be computationally expensive, deterring the suitability of LERM for real-time ap-

plications. We also compare the performance of JBLD against other distances such

as the Cholesky (CHOL) distance and the Frobenius (FROB) distance. Frobenius dis-

tance was seen to perform poorly in all our experiments, although as expected, it is the

fastest. The numerical results are averaged over 10 trials, each time using a different

database and a query set.

5.5.2 Accuracy@K

We take the previous experiments of 1-NN a step further and present results on K-NN

retrieval for an increasing K. The idea is to generalize the power of 1-NN to a K-NN

application. We plot in Figure 8, the results of Accuracy@K, where the maximum

value of K is determined by the cardinality of a ground truth class. The plots clearly

show that JBLD performs well against almost all other metrics in terms of accuracy for

increasing K.

22

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(a)

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(b)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

K

A
c
c
u
ra

c
y
@

K

CHOL
KLDM
FROB
LERM
AIRM
JBLD

(c)

Figure 8: Accuracy@K plots for (a) texture dataset, (b) activity dataset, (c) faces dataset.

5.6 NN Performance Using Metric Tree

Building the Tree: The time required to build the NN data structure plays a critical role

in the deployment of a measure. In Table 5, we show a comparison of the build time of

the metric tree for each of the datasets, with comparisons of JBLD against AIRM. As is

clear from the table, the performance of AIRM is poor and worsens with the increase in

the matrix dimensions (see the face dataset). JBLD, on the other hand, takes far lesser

time to initialize and shows consistent performance even against increasing dataset size

and matrix dimensions.

Dataset (size) AIRM JBLD

Texture (25852) 769.96 131.31

Activity (62425) 2985.62 746.67

Faces (29700) 13776.30 854.33

People (8596) 213.41 53.165

Table 5: Comparison of metric tree buildup times (in seconds) for the various datasets.

5.7 NN Retrieval

5.7.1 Exact NN via Metric Tree

Next, we compare the accuracy and the speed of retrieval of JBLD against the other

metrics using the metric tree. For this experiment, we used a metric tree with four

branches at each internal node and 1K leaf nodes, for all the datasets. Since kmeans

using AIRM was found to take too much time until it converged (it was found that with

the face dataset with 48x48 covariances took more than 3 hours with approximately

26K covariances), we decided to stop the clustering process when there was less than

10% of data movements in the underlying Loyd’s algorithm. This configuration was

forced on kmeans using other metrics as well for fairness of comparison of the results.

We show in Table 6 the average results of 1-NN using the metric tree with 500 queries,

and with averages computed over 10 trials, each time using a different sample set for

the database and the query. As is clear from the table, JBLD provides accuracy equal

to AIRM with at least 1.5 times speedup with the matrices of small size, while more

over 7 times speedup for the face dataset. The retrieval speed of LERM and FROB is

high, while the accuracy is low. KLDM was seen to provide accuracy similar to JBLD,

23

but with low retrieval speed. In short, JBLD seems to provide the best mix of accuracy

and computational expense.

5.7.2 Approximate NN via Metric Tree

It is well-known that the worst case computational complexity of metric tree is linear.

Thus in Table 7, we also evaluate the performance of an approximate variant of metric

tree based retrieval in which we limit the search for NNs while backtracking the metric

tree to at most n items, where in our experiments we used n = 5. This heuristic is in

fact a variant of the well-known Best-Bin-First (BBF) [52] method, the idea being to

sacrifice the accuracy a little bit for a large speedup in retrieval. As is clear from the

table, such a simple heuristic can provide a speedup of approximately 100 times that

of the exact NN, while not much of a lose in the accuracy. Also, it is clear from the

table that JBLD gives the best accuracy among other metrics with reasonable retrieval

results.

5.8 Summary of Results

Here we summarize our findings about JBLD and the other metrics with regard to our

experiments. As is clear from the above tables and plots, JBLD was seen to provide the

best accuracy compared to other metrics, with accuracies sometimes even superseding

that of the Riemannian metric. It might seem from Table 7 that the speed of retrieval

of JBLD is close to that of AIRM; this result needs to be seen together with the results

in Table 5 which shows that building a metric tree for AIRM is extremely challenging,

especially when the data is large dimensional. KLDM sometimes matches the accuracy

of JBLD, and exhibits higher errors at other times. However, it always runs slower than

JBLD, requiring up to more than twice as much computational time. LERM seemed

superior in retrieval speed due to the capability of offline computations, while was seen

to have lower accuracy. Finally, FROB was found to perform the best in speed as would

be expected, but has the lowest accuracy. In summary, JBLD is seen to provide the

most consistent results among all the experiments, with the best accuracy, scalability

and moderate retrieval speeds.

6 Conclusion

We introduced a similarity measure based on the Jensen-Bregman LogDet Divergence

(JBLD) defined over the set of positive-definite (covariance) matrices. The measure has

several desirable theoretical properties including inequalities relating it to other metrics

for covariances. More importantly, it was shown to outperform the Riemannian metric

in speed, without any drop in accuracy. Further, we showed results for computing the

centroid of covariance matrices under our metric, followed by an application to nearest

neighbor retrieval using a metric tree. Experiments validated the effectiveness of the

measure. Going forward, we would like to investigate the applicability of JBLD in

classification and regression settings.

24

Dataset AIRM JBLD LERM KLDM FROB

Texture

Acc. (%) 83.00 83.00 78.40 83.00 52.00

Time (ms) 953.4 522.3 396.3 1199.6 522.0

Activity

Acc. (%) 98.8 99.00 95.80 98.60 85.60

Time (ms) 3634.0 3273.8 1631.9 4266.6 1614.92

Faces

Acc. (%) 26.6 26.6 22.8 26.1 20.6

Time (ms) 9756.1 1585.1 680.8 2617.7 658.6

People

Acc. (%) – 100 92.0 98.1 43.3

Time (ms) 354.3 229.7 214.2 701.1 163.7

Table 6: True NN using the metric tree. The results are averaged over 500 queries. Also refer

to Table 5 for comparing the metric tree creation time.

Dataset AIRM JBLD LERM KLDM FROB

Texture

Acc. (%) 80.2 81.40 76.80 81.40 48.80

Time (ms) 34.28 21.04 18.18 52.98 17.73

Activity

Acc. (%) 95.6 96.20 93.60 95.6 78.00

Time (ms) 38.1 30.39 20.3 85.9 12.2

Faces

Acc. (%) 22.4 24.2 20.2 22.2 18.6

Time (ms) 26.16 23.2 20.6 55.7 16.6

People

Acc.(%) – 91.3 85.6 91.1 36.4

Time (ms) 4.81 4.78 3.31 8.12 3.07

Table 7: ANN performance using Best-Bin-First strategy using metric tree. The results are

averaged over 500 queries. Also refer to Table 5 for comparing the metric tree creation time.

Acknowledgements

This material is based upon work supported in part by the U.S. Army Research Labora-

tory and the U.S. Army Research Office under contract #911NF-08-1-0463 (Proposal

55111-CI), and the National Science Foundation through grants #IIP-0443945, #CNS-

0821474, #IIP- 0934327, #CNS-1039741, #IIS-1017344, #IIP-1032018, and #SMA-

1028076. Arindam Banerjee is supported by NSF grants #IIS-0916750, #IIS-0812183,

#IIS-1029711, #NetSE-1017647, and NSF CAREER award #IIS-0953274.

References

[1] D. Alexander, C. Pierpaoli, P. Basser, and J. Gee, “Spatial transformations of dif-

fusion tensor magnetic resonance images,” IEEE Trans. on Med. Imaging, vol. 20,

25

no. 11, pp. 1131–1139, 2002.

[2] H. Zhu, H. Zhang, J. Ibrahim, and B. Peterson, “Statistical analysis of diffusion

tensors in diffusion-weighted magnetic resonance imaging data,” Journal of the

American Statistical Association, vol. 102, no. 480, pp. 1085–1102, 2007.

[3] M. Chiang, R. Dutton, K. Hayashi, O. Lopez, H. Aizenstein, A. Toga, J. Becker,

and P. Thompson, “3D pattern of brain atrophy in HIV/AIDS visualized using

tensor-based morphometry,” Neuroimage, vol. 34, no. 1, pp. 44–60, 2007.

[4] O. Tuzel, F.Porikli, and P. Meer., “Region covariance: A fast descriptor for detec-

tion and classification,” ECCV, 2006.

[5] F. Porikli, and O. Tuzel, “Covariance tracker,” CVPR, 2006.

[6] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification on rieman-

nian manifolds,” in Computer Vision and Pattern Recognition. IEEE, 2007, pp.

1–8.

[7] J. Malcolm, Y. Rathi, and A. Tannenbaum, “A graph cut approach to image seg-

mentation in tensor space,” in CVPR, june 2007, pp. 1–8.

[8] T. Brox, M. Rousson, R. Deriche, and J. Weickert, “Unsupervised segmentation

incorporating colour, texture, and motion,” in Computer Analysis of Images and

Patterns. Springer, 2003, pp. 353–360.

[9] H. Min, N. Papanikolopoulos, C. Smith, and V. Morellas, “Feature-based covari-

ance matching for a moving target in multi-robot following,” in The 19th Mediter-

ranean Conf. on Control and Automation, 2011.

[10] Y. Pang, Y. Yuan, and X. Li, “Gabor-based region covariance matrices for face

recognition,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 18,

no. 7, pp. 989–993, 2008.

[11] W. Zheng, H. Tang, Z. Lin, and T. Huang, “Emotion recognition from arbitrary

view facial images,” ECCV, pp. 490–503, 2010.

[12] R. Caseiro, J. Henriques, and J. Batista, “Foreground segmentation via back-

ground modeling on riemannian manifolds,” in ICPR, 2010, pp. 3570–3574.

[13] K. Guo, P. Ishwar, and J. Konrad, “Action recognition using sparse representation

on covariance manifolds of optical flow,” in AVSS. IEEE, 2010, pp. 188–195.

[14] C. Ye, J. Liu, C. Chen, M. Song, and J. Bu, “Speech emotion classification on a

Riemannian manifold,” Adv. Multimedia Inf. Proc., pp. 61–69, 2008.

[15] Y. Shinohara, T. Masuko, and M. Akamine, “Covariance clustering on Rieman-

nian manifolds for acoustic model compression,” in ICASSP, 2010, pp. 4326–

4329.

26

[16] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive hashing

scheme based on p-stable distributions,” Annual Symposium on Computational

Geometry, pp. 253–262, 2004.

[17] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean metrics for

fast and simple calculus on diffusion tensors,” Magnetic Resonance in Medicine,

vol. 56, no. 2, pp. 411–421, 2006.

[18] M. Moakher and P. Batchelor, “Symmetric positive-definite matrices: from ge-

ometry to applications and visualization,” Visualization and Processing of Tensor

Fields, 2006.

[19] R. Bhatia, Positive definite matrices. Princeton Univ Press, 2007.

[20] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for tensor com-

puting,” IJCV, vol. 66, no. 1, pp. 41–66, 2006.

[21] X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng, “Visual tracking via

incremental log-euclidean riemannian subspace learning,” in CVPR, 2008.

[22] Q. Gu and J. Zhou, “A similarity measure under Log-Euclidean metric for stereo

matching,” in CVPR, 2009, pp. 1–4.

[23] R. Bhatia, Matrix analysis. Springer Verlag, 1997, vol. 169.

[24] Z. Wang, B. Vemuri, Y. Chen, and T. Mareci, “A constrained variational principle

for direct estimation and smoothing of the diffusion tensor field from complex

dwi,” IEEE Trans. on Med. Imaging, vol. 23, no. 8, pp. 930–939, 2004.

[25] I. Dryden, A. Koloydenko, and D. Zhou, “Non-euclidean statistics for covari-

ance matrices, with applications to diffusion tensor imaging,” Annals of Applied

Statistics, vol. 3, no. 3, pp. 1102–1123, 2009.

[26] P. Turaga and R. Chellappa, “Nearest-neighbor search algorithms on non-

Euclidean manifolds for computer vision applications,” in CVGIP, 2010, pp. 282–

289.

[27] R. Chaudhry and Y. Ivanov, “Fast approximate nearest neighbor methods for

non-Euclidean manifolds with applications to human activity analysis in videos,”

ECCV, pp. 735–748, 2010.

[28] B. Kulis, M. Sustik, and I. Dhillon, “Low-rank Kernel Learning with Bregman

Matrix Divergences,” JMLR, vol. 10, pp. 341–376, 2009.

[29] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering with Bregman

divergences,” JMLR, vol. 6, pp. 1705–1749, 2005.

[30] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Ap-

plications. Oxford University Press, 1997.

27

[31] F. Nielsen and R. Nock, “On the centroids of symmetrized bregman divergences,”

Arxiv preprint arXiv:0711.3242, 2007.

[32] ——, “Jensen-Bregman Voronoi diagrams and centroidal tessellations,” in Intl.

Symp. on Voronoi Diagrams in Science and Engg., 2010, pp. 56–65.

[33] A. Banerjee, D. Boley, and S. Acharyya, “Symmetrized Bregman Divergences

and Metrics,” The Learning Workshop, 2009.

[34] P. Chen, “Bregman metrics and their applications,” Ph.D. dissertation, University

of Florida, 2007.

[35] S. Sra, “Positive definite matrices and the symmetric stein divergence,”

http://arxiv.org/abs/1110.1773, 2011.

[36] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins

University Press, 1996.

[37] P. Fillard, V. Arsigny, N. Ayache, and X. Pennec, “A riemannian framework for

the processing of tensor-valued images,” Deep Structure, Singularities, and Com-

puter Vision, pp. 112–123, 2005.

[38] A. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural Compu-

tation, vol. 15, no. 4, pp. 915–936, 2003.

[39] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II.

Springer-Verlag, New York, 1988.

[40] H. Le, “Locating fréchet means with application to shape spaces,” Advances in

Applied Probability, vol. 33, no. 2, pp. 324–338, 2001.

[41] R. Horn and C. Johnson, Matrix analysis. Cambridge University Press, 1990.

[42] B. Sriperumbudur and G. Lanckriet, “On the convergence of the concave-convex

procedure,” NIPS, vol. 22, pp. 1759–1767, 2009.

[43] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for

similarity search in metric spaces,” in VLDB. Morgan Kaufmann Publishers

Inc., 1997, pp. 426–435.

[44] S. Brin, “Near neighbor search in large metric spaces,” in VLDB, 1995.

[45] D. Bini and B. Iannazzo, “Computing the karcher mean of symmetric positive

definite matrices,” LAA, 2011.

[46] T. Myrvoll and F. Soong, “On divergence based clustering of normal distribu-

tions and its application to HMM adaptation,” in European Conference on Speech

Communication and Technology, 2003, p. 1517.

[47] E. Maggio, E. Piccardo, C. Regazzoni, and A. Cavallaro, “Particle PHD filtering

for multi-target visual tracking,” in ICASSP, vol. 1, 2007.

28

[48] K. Dana, B. Van-Ginneken, S. Nayar, and J. Koenderink, “Reflectance and Tex-

ture of Real World Surfaces,” TOG, vol. 18, no. 1, pp. 1–34, Jan 1999.

[49] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as space-

time shapes,” PAMI, vol. 29, no. 12, pp. 2247–2253, 2007.

[50] C. Chen, M. Ryoo, and J. Aggarwal, “UT-Tower

Dataset: Aerial View Activity Classification Challenge,”

http://cvrc.ece.utexas.edu/SDHA2010/Aerial View Activity.html, 2010.

[51] V. Jain and E. Learned-Miller, “FDDB: a benchmark for face detection in uncon-

strained settings,” University of Massachusetts, Amherst, Tech. Rep. UM-CS-

2010-009, 2010.

[52] J. Beis and D. Lowe, “Shape indexing using approximate nearest-neighbour

search in high-dimensional spaces,” in CVPR, 1997, pp. 1000–1006.

29

